If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+41x-100=0
a = 4; b = 41; c = -100;
Δ = b2-4ac
Δ = 412-4·4·(-100)
Δ = 3281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-\sqrt{3281}}{2*4}=\frac{-41-\sqrt{3281}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+\sqrt{3281}}{2*4}=\frac{-41+\sqrt{3281}}{8} $
| 94/100=x/60 | | (x+64)+(x-11)=180 | | 2=2b-4 | | 7.2x+4.8=4.1x-7.6 | | 6x-5)-x=-2(x+1)3131 | | 2x+3x+4x=6=75 | | 54/x^2=x2 | | 12.5=x/2 | | 21.4+4y=8y+11 | | -5+5r=15 | | (7x+1)+(18+4)=180 | | 5x-17=6x-10 | | 13.38m+10=13.88-20 | | 61/11=x+5 | | 1.4x+9=7x | | x9=18 | | )2x–9=6–x | | 121x/2=8/x | | 17x=1356 | | 22x-33=10x=10+5 | | 3(2x+6)=-44+50 | | 27m+22.75=52m+16.50 | | 3(m/2+5)=33 | | m2=34˚ | | -4u+32=7(u+3) | | 4(2)^2x-100=0 | | 6q=212 | | 1/3r=-4 | | X=5/9-3y | | -4(u+7)=7u-6 | | 21x+6=8x+9= | | 7^x-9=12 |